Extensions 1→N→G→Q→1 with N=C7xSD16 and Q=C22

Direct product G=NxQ with N=C7xSD16 and Q=C22
dρLabelID
SD16xC2xC14224SD16xC2xC14448,1353

Semidirect products G=N:Q with N=C7xSD16 and Q=C22
extensionφ:Q→Out NdρLabelID
(C7xSD16):1C22 = D7xC8:C22φ: C22/C1C22 ⊆ Out C7xSD16568+(C7xSD16):1C2^2448,1225
(C7xSD16):2C22 = SD16:D14φ: C22/C1C22 ⊆ Out C7xSD161128-(C7xSD16):2C2^2448,1226
(C7xSD16):3C22 = D8:5D14φ: C22/C1C22 ⊆ Out C7xSD161128+(C7xSD16):3C2^2448,1227
(C7xSD16):4C22 = D8:6D14φ: C22/C1C22 ⊆ Out C7xSD161128-(C7xSD16):4C2^2448,1228
(C7xSD16):5C22 = D7xC8.C22φ: C22/C1C22 ⊆ Out C7xSD161128-(C7xSD16):5C2^2448,1229
(C7xSD16):6C22 = D56:C22φ: C22/C1C22 ⊆ Out C7xSD161128+(C7xSD16):6C2^2448,1230
(C7xSD16):7C22 = C56.C23φ: C22/C1C22 ⊆ Out C7xSD161128+(C7xSD16):7C2^2448,1231
(C7xSD16):8C22 = C2xD56:C2φ: C22/C2C2 ⊆ Out C7xSD16112(C7xSD16):8C2^2448,1212
(C7xSD16):9C22 = C2xSD16:D7φ: C22/C2C2 ⊆ Out C7xSD16224(C7xSD16):9C2^2448,1213
(C7xSD16):10C22 = D8:10D14φ: C22/C2C2 ⊆ Out C7xSD161124(C7xSD16):10C2^2448,1221
(C7xSD16):11C22 = D8:15D14φ: C22/C2C2 ⊆ Out C7xSD161124+(C7xSD16):11C2^2448,1222
(C7xSD16):12C22 = C2xD7xSD16φ: C22/C2C2 ⊆ Out C7xSD16112(C7xSD16):12C2^2448,1211
(C7xSD16):13C22 = C2xSD16:3D7φ: C22/C2C2 ⊆ Out C7xSD16224(C7xSD16):13C2^2448,1214
(C7xSD16):14C22 = D28.29D4φ: C22/C2C2 ⊆ Out C7xSD161124(C7xSD16):14C2^2448,1215
(C7xSD16):15C22 = D7xC4oD8φ: C22/C2C2 ⊆ Out C7xSD161124(C7xSD16):15C2^2448,1220
(C7xSD16):16C22 = D8:11D14φ: C22/C2C2 ⊆ Out C7xSD161124(C7xSD16):16C2^2448,1223
(C7xSD16):17C22 = C14xC8:C22φ: C22/C2C2 ⊆ Out C7xSD16112(C7xSD16):17C2^2448,1356
(C7xSD16):18C22 = C14xC8.C22φ: C22/C2C2 ⊆ Out C7xSD16224(C7xSD16):18C2^2448,1357
(C7xSD16):19C22 = C7xD8:C22φ: C22/C2C2 ⊆ Out C7xSD161124(C7xSD16):19C2^2448,1358
(C7xSD16):20C22 = C7xD4oD8φ: C22/C2C2 ⊆ Out C7xSD161124(C7xSD16):20C2^2448,1359
(C7xSD16):21C22 = C7xD4oSD16φ: C22/C2C2 ⊆ Out C7xSD161124(C7xSD16):21C2^2448,1360
(C7xSD16):22C22 = C14xC4oD8φ: trivial image224(C7xSD16):22C2^2448,1355

Non-split extensions G=N.Q with N=C7xSD16 and Q=C22
extensionφ:Q→Out NdρLabelID
(C7xSD16).C22 = D28.44D4φ: C22/C1C22 ⊆ Out C7xSD162248-(C7xSD16).C2^2448,1232
(C7xSD16).2C22 = D8.10D14φ: C22/C2C2 ⊆ Out C7xSD162244-(C7xSD16).2C2^2448,1224
(C7xSD16).3C22 = C7xQ8oD8φ: C22/C2C2 ⊆ Out C7xSD162244(C7xSD16).3C2^2448,1361

׿
x
:
Z
F
o
wr
Q
<